Assigning real-time tasks to heterogeneous processors by applying ant colony optimization
نویسندگان
چکیده
The problem of determining whether a set of periodic tasks can be assigned to a set of heterogeneous processors without deadline violations has been shown, in general, to be NP-hard. This paper presents a new algorithm based on ant colony optimization (ACO) metaheuristic for solving this problem. A local search heuristic that can be used by various metaheuristics to improve the assignment solution is proposed and its time and space complexity is analyzed. In addition to being able to search for a feasible assignment solution, our extended ACO algorithm can optimize the solution by lowering its energy consumption. Experimental results show that both the prototype and the extended version of our ACO algorithm outperform major existing methods; furthermore, the extended version achieves an average of 15.8% energy saving over its prototype. © 2010 Elsevier Inc. All rights reserved.
منابع مشابه
Hybrid Metaheuristic Algorithm for Real Time Task Assignment Problem in Heterogeneous Multiprocessors
The assignments of real time tasks to heterogeneous multiprocessors in real time applications are very difficult in scenarios that require high performance. The main problem in the heterogeneous multiprocessor system is task assignment to the processors because the execution time for each task varies from one processor to another. Hence, the problem of finding a solution for task assignment to ...
متن کاملTask scheduling using probabilistic ant colony heuristics
The problem of determining whether a set of tasks can be assigned to a set of heterogeneous processors in general is NP-hard. Generating an efficient schedule of tasks for a given application is critical for achieving high performance in a heterogeneous computing environment. This paper presents a novel algorithm based on Ant Colony Optimization (ACO) for the scheduling problem. An attempt is m...
متن کاملDecentralized Multi-tasks Distribution in Heterogeneous Robot Teams by Means of Ant Colony Optimization and Learning Automata
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-election of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested on decentralized solution where the robots themselves autonomously and in an individual manner, are re...
متن کاملParallel Implementation of Task Scheduling using Ant Colony Optimization
Efficient scheduling of tasks for an application is critical for achieving high performance in heterogeneous computing environment. The task scheduling has been shown to be NP complete in general case and also in several restricted cases. Because of its key importance on performance, the task scheduling problem has been studied and various heuristics are proposed in literature. This paper prese...
متن کاملTasks Scheduling using Ant Colony Optimization
Problem statement: Efficient scheduling of the tasks to heterogeneous processors for any application is critical in order to achieve high performance. Finding a feasible schedule for a given task set to a set of heterogeneous processors without exceeding the capacity of the processors, in general, is NP-Hard. Even if there are many conventional approaches available, people have been looking at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Parallel Distrib. Comput.
دوره 71 شماره
صفحات -
تاریخ انتشار 2011